Distributed community detection in dynamic graphs
نویسندگان
چکیده
منابع مشابه
Distributed Community Detection in Dynamic Graphs - (Extended Abstract)
Inspired by the increasing interest in self-organizing social opportunistic networks, we investigate the problem of distributed detection of unknown communities in dynamic random graphs. As a formal framework, we consider the dynamic version of the well-studied Planted Bisection Model dyn-G(n, p, q) where the node set [n] of the network is partitioned into two unknown communities and, at every ...
متن کاملLocal Community Detection in Dynamic Graphs Using Personalized Centrality
Analyzing massive graphs poses challenges due to the vast amount of data available. Extracting smaller relevant subgraphs allows for further visualization and analysis that would otherwise be too computationally intensive. Furthermore, many real data sets are constantly changing, and require algorithms to update as the graph evolves. This work addresses the topic of local community detection, o...
متن کاملCommunity detection in graphs
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i.e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, ...
متن کاملDistributed Community Detection on Edge-labeled Graphs using Spark
How can we detect communities in graphs with edge-labels, such as time-evolving networks or edge-colored graphs? Unlike classical graphs, edge-labels contain additional information about the type of edges, e.g., when two people got connected, or which company hosts the air route between two cities. We model community detection on edge-labeled graphs as a tensor decomposition problem and propose...
متن کاملCommunity Detection on Evolving Graphs
Clustering is a fundamental step in many information-retrieval and data-mining applications. Detecting clusters in graphs is also a key tool for finding the community structure in social and behavioral networks. In many of these applications, the input graph evolves over time in a continual and decentralized manner, and, to maintain a good clustering, the clustering algorithm needs to repeatedl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2015
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2014.11.026